數學女王頭上的皇冠
有些數學家認為,數學是科學的女王,而數論則是女王頭上的一頂皇冠.
在數學王國裏,也許數論是最困難的領域之一.數論的命題往往十分簡單,但證明時往往無從下手,需要高度的創造性,也許這正是數論引人入勝的地方.
數論題目具有恆久的魅力,哥德巴赫猜想,費馬大定理......,吸引了無數天才的數學家.流連在數論宏偉的殿堂裏,你會為那永恆的美而驚歎.
數學女王頭上的皇冠
💬 57 則回應
熱身題
先來熱身一下,證明一個簡單的題目:
證明素數的平方根是無理數.
請各位數論迷試試.
請先問問張兄
甚麼是素數?可否解釋一下數論其實是甚麼,有何重要性?謝謝.
難題
請各位數學迷試證如下題目:
a, b是正整數, 且a^2+b^2能被1+ab整除,
證明:
(a^2+b^2) /(1+ab) 是一個完全平方數.
或者說證明:
(a^2 + b^2) ≡ 0 mod(1+ab)=> [(a^2 + b^2) /(1+ab)] = K^2
其中 a,b,K εN
這道數論題較難,首先證明出來的人,我送他一本中文書(可以一起到三聯書店或商務印書館選購)兼請他吃一餐飯.
由於我最近有要務在身,將暫別這個網站,或只是偶爾露一下臉,不會參與討論,對錯誤的證明不做回應.
希望各位能互相研究.
所謂「要務在身」,是寫你提過要出版的書?
送一張"無間道"戲飛好冇?
Answer
I think JJ's answer is mostly correct, but incomplete. I can't type those fancy powers, so I will use the Pascal- or C- type symbols as follows.
First, I give some counter-examples for JJ. I didn't do it by pencil and paper, I wrote a simple program. The following pairs are all solutions of (a,b) < 100, with symmetric ones removed:
a=1 b=1
a=2 b=8
a=3 b=27
a=4 b=64
a=8 b=30
JJ showed successfully that when a=b, the only possiblity is a=b=1:
2a^2=n(1+a^2)
=> (2-n)(a^2)=n
=> n=1 (since otherwise (2-n) = 0 or (2-n) < 0)
but (a^2) is positive, if (2-n) is negative, n=(2-n)(a^2) will be negative.
So n=1,2a^2=n(1+a^2) => a^2=1 => a=1.
He missed the point that the statement can still be true even if a, b are not the same.
When a!=b (@)
if a1 and a2 are roots of a in
a^2 - nba + b^2 - n = 0 (*) (NBA!)
then a2 = nb - a1.
Since both a1 and a2 fulfil (*), that is,
if a=alpha fulfils (*), so is (nb-alpha).
And the same is true for b too, because a and b are symmetric, i.e.
if b=beta fulfils (*), so is (na-beta).
Therefore, we have a recurrence relation of pairs of integers fulfilling (*):
_0 = a
_1 = b,
_k = n (_k-1) - (_k-2)
such that
p(k): "_k^2 + (_k+1)^2 = n (1 + _k _k+1)"
We know _0 and _1 are both not zero (from (@))
And if _k-1, _k are BOTH NOT zero, _k, _k+1 are NOT BOTH zero.
Since the sequence is strictly monotonic decreasing, if _k+1 is zero, _k+2 will be negative.
Hence we've proved by MI that not both _k and _k+1 in any p(k) are zero.
Since the sequence is strictly monotonic decreasing, there must exist a k' such that
in p(k') _k' > 0 but _k'+1 <= 0. (For a finite integer, everytime it decreases by a certain amount,
it will pass zero at some large k. )
we prove _k'+1 won't be < 0 by indirect proof:
p(k'): _k'^2 + (_k'+1)^2 = n (1 + _k' _k'+1)
n = (_k'^2 + (_k'+1)^2) / (1 + _k' _k'+1)
And assume _k'+1 < 0,
if _k'+1 = 1, n is undefined
otherwise n would be negative(numerator always positive, denominator negative). This is impossible.
So _k'+1 = 0.
if _k'+1 = 0,
_k'^2 + (_k'+1)^2 = n (1 + _k' _k'+1) => _k'^2 = n
n is a perfect square!
(Q.E.D.)
Yes, this is a very hard question.
Why not the warm-up one too?
By indirect proof:
Assuming that the statement were not true,
sqrt(p) = a/b
a, b: coprime integers (if not, factor the common factors out)
p=a^2/b^2
p(b^2)=a^2
p is a factor of a^2
by unique factorization theorem,
p must be a factor of a. Write
a=pk (sure, why not?)
p(b^2)=(pk)^2
b^2=p k^2
Similarly, p is a factor of b.
Well, p is both factor of a and b, a and b are not coprime. This is a contradiction, as JPY would also agree, the statement is true. :)
Questions?
To S.C.
You have not proved that all [_(K),_(K+1)] dervied by
_0 = a
_1 = b,
_K = n* _(K-1) - _(K-2) ---(1)
satisfied
p(K): "_(K)^2 + _(K+1)^2 = n (1 + _(K) _(K+1))" ---(2).
If p(K) is a part of definitation, how do you know all _(K), stisfied (1) and (2), exist if k>1 and _(K) are positive integers?
哈哈, 變左數學板 :P
有趣的是另一個數字題目開始變政治板 :P
好想學李天命先生, 對住S.C. 講 bravo! 嘻嘻
不過S.C. 你應睇多次我那個proof.
其實我有考慮a!=b 的情形
( WLOG, 即 without loss of generality, 我考慮的是 a > b )
另外, 你的反例是有效的.
主要是因為原題目打少左一個 condition (a,b)=1 即要求a,b 互質).
通常做數論的題目, 這是基本.
因為如果a,b有公因子r, 則r² 乘原題目的解會也是明顯/直觀解
(當然我們已知原題目的解是1, 所以(a,b)!=1時, r² 會是新題目的解)
我還以為這裡的既有人自稱數學迷/狂/人, 應該會認識費馬發明的"無窮下降法"吧?
到頭來要勞煩S.C.老哥你幫我補充如何及什麼是"無窮下降法"
再一次唔該你~~ :)
S.C. 老兄~
唔記講...
下次你想打平方或其他數學符號, 可以安裝相關的字体and/or 輸入法
簡單的一個半個符號也可以從Character Map 抄出
(Character Map 通常在 progarm file>accessories>system tools 可找到)
以前也可以按alt-num### , 不過似乎某些system /console 未必出到.
問JJ 或其他網友
JJ 如唔,
還記得我在本網區的什麼地方表露過很欣賞你嗎?我現在有個問題:怎樣用歸謬法證明矛盾命題不成立?請你或其他網友為我解惑, 謝謝!
JJ 是指我吧?
欣賞不欣賞不是一個我會回應你的理由吧? (我反而較想回應一些要和我鬥咀的高手高人.....)
反正你就算不欣賞我, 但問題問得好我也會有興趣答
你的問題是"怎樣用歸謬法證明矛盾命題不成立?" 嗎?
你可以講講對此有何疑惑呢??
我不是問得很清楚了嗎:怎樣用歸謬法證明矛盾命題不成立?
玲兒~
不是耍你....
我知你的"問題"是什麼, 我是問你對此"有何疑惑" ??
你的意思是不應成立?
或者你認為要睇情形?
有時成立, 有時不成立?
我同你未至於心靈相通吧? ( :P )
我點知你的疑惑是什麼???
唉!你能否用歸謬法證明矛盾命題不成立?
這𥚃有無好心人呢?
無窮下降法是什麼東西啊!康慈忘記掉了!可以用中文說明嗎?
康慈想當年[1988年左右]去北京大學玩時!二三下解了一個別人解不了的數學公式!康慈又忘了那是什麼公式!有無好心把它人登出來啊!
康慈出生時腦缺氧,加上又有多次重度失憶的記錄!康慈記得自已有四個或以上的哲學思想:烏龜哲學、白兔哲學、開心哲學、康慈哲學或帝王學!康慈好在記得自已最重要的哲學:烏龜哲學!康慈很少和別人說烏龜哲學的內容![好在自己記得]有沒好心人、十三點或[李天命]先生等有記性的好心人把康慈的白兔哲學、開心哲學、康慈哲學或帝王學登上網呢?
JoeJoneS
不知所云(不是說你,是說旁邊那位)。你正在要證明給我看嗎?還在等你呢!
(1) p&~p [Hyp]
(2) ~(p&~p) [RAA, Hyp discharged]
有趣有趣~~
第一次不用一開始就用丈八金剛
康慈, 是的, 是第6題 :P
你也玩過IMO嗎? 那一年?
(可惜始終要送個丈八金剛給你...
你之後講的我不明白....
60_0
玲兒, 我在新聞組中研究緊問題, 遲一點再和你相會.... 還有這位有趣的康慈
:-目
噢... 對不起...
睇漏了"80年代李學徒"前輩...
我也想會一會你 :)
To Testing
Testing:
At your service.
//To S.C.
You have not proved that all [_(K),_(K+1)] dervied by
_0 = a
_1 = b,
_K = n* _(K-1) - _(K-2) ---(1)
satisfied
p(K): "_(K)^2 + _(K+1)^2 = n (1 + _(K) _(K+1))" ---(2). //
First, you understand that
a^2 + b^2 = n (1 + ab) (A)
=> a'^2 + b'^2 = n (1 + a'b'), (B)
where a' = b, b' =nb - a.
Right?
Now a,b are arbitrary. No matter what they are, if they fulfil (A),
a', b' must fulfil (B). So we have a recurrence relation.
To make it simpler, define proposition p'(x,y) = 'x^2 + y^2 = n (1 + xy)' with all given requirements
I have (well JJ has) showed that
p'(a, b) => p'(b, nb - a), for all a and b. (C)
If (a,b) fulfils the antecedent, the consequence will be also true.
p(k) in (2) just means p'(_k, _l+1), right? I tackle the recurrence by MI, of course.
p'(0, 1): given. (Strictly speaking, the convergence of the sequence { _k } should take
an assumption as JJ suggested a > b. This is okay because a, b are arbitrary and symmetric. )
Assume p(_k-1, _k) is true. (k >= 1)
By (C),
p(_k, n(_k) - _k-1) (just subst _k-1, _k into (C))
By (1),
p(_k, _k+1) (simply applying (1) for _k+1)
So by MI (without those formality cuties), p'(_k, _l+1), and its equivalence p(k) are true.
Can I claim my prize? :)
To JoeJones
Well, of course I know you tried to tackle the a>b case. So I said what I said. :)
Heehee, I don't type symbols so often so I will pass, but thanks for your info. If I type, I will use latex or just word.
I guess people are not familiar with chinese terms? :)
Thank you.
To Great Mathematician, s.c.
a and b cannot be are arbitrary since you need to fix the value of n. {_0=a, _1=b} of course fulfills (1) and (2) because they are definition. However what is the case when k>1? Let’s use your findings, counter example of JoeJones’s proof, which show JoeJone’s proof incorrect.
Let’s say
_0=a=8
_1=b=2
=> n=2
according to (1),
_2=2*2-8=-4
_3=2*(-4)-2=-10
.
.
.
Now let’s check if {_1,_2} and {_2,_3} fulfill (2),
For case {_1=2, _2=-4}
LHS=_1^2+_2^2
=(2)^2+(-4)^2
=20
RHS=n*(1+_1*_2)
=2*(1+2*(-4))
=-14
=/=LHS
similarly, for case {_2=-4,_3=-10}
LHS=116=/=RHS=82
This simple calculation shows when k>1, all pairs {_K,_(K+1)} derived by (1) cannot satisfy (2). That means your definition is not self consistent. Therefore, your proof is definitely WRONG!
To Great Arithmetician TESTING
When a = 8, b = 2,
n = (64 + 4) / (1 + 16) = 4.
Thank you.
To Great Mathematician, s.c. Again
Thank you for pointing out my mistake!!!
This is an unforgivable fault, so I decided to study Arithmetic again as well as attending primary school classes.
太好野 la !
TESTING : // This is an unforgivable fault, so I decided to study Arithmetic again as well as attending primary school classes. //
你咁講真係好o勒!我以後就乜數都唔駛睇、唔駛讀、唔駛計咁話 lah !多謝哂你 ah ,阿 TESTING !
多謝80年代李學徒
多謝,好多謝!
Do we have any pure math major here?
Are you the founder of Robinson's arithmetic and non-standard analysis?
潛存讀者
今天才有空上網,遲了回答,抱歉.
所謂"要務在身",是我將最近的研究成果總結一下,打算將之上網與大家討論.我將新開一個話題----"分析邏輯".
謝謝!
To S.C.
我剛將你的證明印出來(看電腦眼睛較辛苦),讓我仔細研究一下.
向S.C.喝采!!!
初步看一下,你的證明應該是正確的,先向你致敬.
由於有些數學符號無法直接打在留言區裏,你就使用電腦上的數學語言,但我不熟悉這些語言,有些符號我要靠猜測.
你能否用Latex(.ps)或word(.doc)將完整詳盡的證明用標準的數學語言打成文件擺上網,讓我們可以下載?
你的證明十分優美.愛好數學的人不但要求有一個證明,而且要求證明優美簡潔.我相信許多愛好數論的朋友都有興趣下載並珍藏你優美的證明.
約個時間領取你的獎品,謝謝!
JoeJones
佩服你的數學能力,惜邏輯性稍欠嚴謹,而且粗枝大葉.如果沒有這些缺點,你當年就會是香港代表隊的正選.
無論如何,你對這個證明也有貢獻.S.C.領全份獎品,你領半份----請你吃一餐,如何?不吃白不吃.
n/t
http://www.geocities.com/xxh33/proof.gif
I didn't have time to check the details. Let me know if there are any typos or mistakes. :)
入學啦!
十三點,
我喺春田花花小學讀一年班,喺1A班學算術,你喺唔喺我ge同學仔吓?下學期見啦!記住到時借功課我抄喎!
Bye Bye
寫緊書
十三點去春田花花幼兒園度面試 nursery 班,點知道個度 d人話我個人頭豬腦唔夠大,未夠斤兩,仲即刻叫我走添 ah!真真令十三點好開心呀!
唔係o羊?唔駛返學喎!你估做阿麥 X 同麥 Y 個同學仔好咩?我都話左最驚 d 數架 lah!你係唔係嚮度笑人地 jeh?你阿 TESTING 都唔多理人地個心 ge!
我同阿 S. C. 講過話整理緊自己寫 ge 野,遲 d 會出本《十三點 D思考藝術》,一於做思想家咁話架!
思想家唔駛考牌個播,又唔駛讀書,
你唔知 ge咩?
也可以再用其他方法證明
思方迷(也許還有Robinson),看樣子你(們)是讀純數學的.看過S.C.的證明了嗎?太美妙了.你興趣也可以以不同的方法再證明一次.其他人也是.
更正
"你興趣"應是"你有興趣".
給數學家S.C.
謝謝您將完整的證明寫出來.我將它印出來,對它進行最後的驗證,從中獲得極大的樂趣.
近來專注於分析邏輯的研究和建構,少看數學書,好久沒有欣賞到這樣美妙的證明.再次謝謝您.
有幸請您吃飯嗎?如果您是在大學教書,我可以到學校去找您,這樣就不會浪費您太多時間,也可以順便在大學書店選購您感興趣的書.
我的電郵:nought@ctimail.com
上路 . 忘情
!你出書啊!可唔可以送本俾我, 我都想學下十三點ge思考方法學。
其實我都想出本書來幫下世間ge情痴,書名我諗左係<<上路 . 忘情>> 或者 係<<忘情 . 上路>>,你話邊個名好? 為左寫呢本書,聽日要走啦!去感受一下上路及忘情。
有緣再見!
對待錯誤的五種方式
當自己錯誤的觀點被人指出後,應該怎麼辦?
下下策:破口大罵,咀咒對方下地獄.如揣摩.
下策:詭辯,如梁燕城博士.
中策:做無頭龜,如張海澎.
上策:承認錯誤,如愛因斯坦.
上上策:自嘲,如Testing.
SC:
Nice proof! Except that in line 2 of case 2 you might want to change the =>'s to <=>'s.
張海澎:
I can't think of a different proof right now, but it's something interesting to think about.
To : TESTING
乜話 ~ ?拿,你自己打自己o既咀架咋,唔好一陣間又入我數 ah !
又話自己要忘情,咁做o羊野重要問我播?我講黎又做o羊播?
上路
再見!
To Robinson
(P<=>q)=>(p=>q)
"=>" is enough for the purpose of this proof.
張海澎
I think he needs the fact that a is a root for x^2-(nb)x+(b^2-n) => P(a,b,n) in order to conclude that P(b,nb-a,n)
n/t
Hey you two, merry Xmas!
Thank you for your comments.
Maybe Rob was talking about:
"Since alpha=nb-a is also a root,
P(b,nb-a,n)." If I used <=> there, this step might make more sense. I think it's more a matter of style than correctness. Changing to <=> or not is okay with me. :)
Hoi Pang: I don't live in HK. But I will sure wanna talk with you on other topics thru emails. I will email soon, feel free to email me back. :)
哈?
原本您不在香港?您還說沒錢去非洲,只能去長洲.哈哈!
您現在在哪一洲?長洲還是短洲?
獎品怎樣交到您手裏?這樣吧,您出來回的機票和住宿費,我親自把獎品交給您,好嗎?
海澎:
我會回香港嘛。但不會到非洲。儲定錢先﹐儲夠就去北非。:)
SC:
It's only a minor technicality really. Anyway your proof is nice.
A simple proof
Here we are going to use indirect proof.
Suppose that a != b (“a!=b” means a is not equal to b), and
(a^2+b^2)/(ab+1)=k ……(1),
where k is a positive integer and is not a perfect square.
Therefore, we have an indefinite equation,
a^2-kab+b^2=k ……(2)
It is clear that there exists a solution (a,b) such that ab>0. (since if ab<0, then –ab>1, therfor a^2+b^2<=0, impossible!) (<= means less than or equal to)
Now we can choose a pair of solution (a,b) s.t a>0,b>0 and a+b is MIMINUM. And suppose that a>=b and k and b are fixed, so (2) is now a quadratic equation in a, Its roots are, say, a and a’. We have,
a+a’=kb ……(3)
aa’=b^2-k ……(4)
From (3) and (4), we know that a’ is an integer and a’ !=0, otherwise k is a prefect square which is contradictory to the assumption.
Since a>0, so a’>0. And from 4
a’=(b^2-k)/a
<=(b^2-1)/a
<=(a^2-1)/a
< a
As (a’,b) is a solution of (2)and a’>0,b>0, but a’+b < a+b which is contradictory to our selection of (a,b). (since a+b is minimum!) Therefore is k is a prefect square!
Great !
請教 testing
> It is clear that there exists a solution (a,b) such that ab>0. <
想知如果 a, b 是互質的, 而且 a != b 的話, 那這個solution(a,b) 還存在嗎?
JoeJoneS
你沒看清楚題目.
題目是說:
*如果* a^2+b^2能被1+ab整除的話,那麼其商是一個完全平方數.
如果 a^2+b^2不能被1+ab整除,其商當然不是一個完全平方數,但這與題目的條件無關.
我想知的是
"a^2+b^2不能被1+ab整除" 會否得出a,b 是互質?
我只知當 a,b 是互質和不相等時, 原題目是無解的
JoeJoneS
你的意思是:
1. 當 a,b 是互質和不相等時,a^2+b^2不能被1+ab整除,
還是
2.當 a,b 是互質和不相等且a^2+b^2能被1+ab整除時,其商不是一個完全平方數?
如果你的意思是1,即使是真的,那又如何?
如果你的意思是2,請證明,或舉一例.
JoeJoneS
>>想知如果 a, b 是互質的, 而且 a != b 的話, 那這個solution(a,b) 還存在嗎?<<
I have no idea on your conjecture. I can't prove or disprove it! BTW, you may ask a wrong question. I think you are going to ask: If there exists integers a,b s.t. 1+ab|(a^2+b^2) and that quotent is a prefect square, then gcd(a,b)!=1 .
🔒
此話題已封存
這是一個歷史話題,無法新增回應。
(This is a historic thread. Replies are disabled.)